Stable Propagation of Activity Pulses in Populations of Spiking Neurons
نویسندگان
چکیده
We investigate the propagation of pulses of spike activity in a neuronal network with feedforward couplings. The neurons are of the spike-response type with a firing probability that depends linearly on the membrane potential. After firing, neurons enter a phase of refractoriness. Spike packets are described in terms of the moments of the firing-time distribution so as to allow for an analytical treatment of the evolution of the spike packet as it propagates from one layer to the next. Analytical results and simulations show that depending on the synaptic coupling strength, a stable propagation of the packet with constant waveform is possible. Crucial for this observation is neither the existence of a firing threshold nor a sigmoidal gain function--both are absent in our model--but the refractory behavior of the neurons.
منابع مشابه
Correlations Decrease with Propagation of Spiking Activity in the Mouse Barrel Cortex
Propagation of suprathreshold spiking activity through neuronal populations is important for the function of the central nervous system. Neural correlations have an impact on cortical function particularly on the signaling of information and propagation of spiking activity. Therefore we measured the change in correlations as suprathreshold spiking activity propagated between recurrent neuronal ...
متن کاملImproving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملFrom artificial neural networks to spiking neuron populations and back again
In this paper, we investigate the relation between Artificial Neural Networks (ANNs) and networks of populations of spiking neurons. The activity of an artificial neuron is usually interpreted as the firing rate of a neuron or neuron population. Using a model of the visual cortex, we will show that this interpretation runs into serious difficulties. We propose to interpret the activity of an ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2002